Time Series Analysis in AFNII

Outline: 6+ Hours of Edification

- Philosophy (e.g., theory without equations)
- Sample FMRI data
- Theory underlying FMRI analyses: the HRF
- "Simple" or "Fixed Shape" regression analysis
 - ★ Theory and Hands-on examples
- "Deconvolution" or "Variable Shape" analysis
 - ★ Theory and Hands-on examples
- Advanced Topics (followed by brain meltdown)

Goals: Conceptual <u>Understanding</u> + Prepare to Try It Yourself

Data Analysis Philosophy

- <u>Signal</u> = Measurable response to stimulus
- Noise = Components of measurement that interfere with detection of signal
- Statistical detection theory:
 - ★ <u>Understand</u> relationship between stimulus & signal
 - ★ Characterize noise statistically
 - ★ Can then devise methods to distinguish noise-only measurements from signal+noise measurements, and assess the methods' reliability
 - ★ Methods and usefulness depend strongly on the assumptions
 - Some methods are more "robust" against erroneous assumptions than others, but may be less sensitive

FMRI Philosopy: Signals and Noise

- FMRI <u>Stimulus→Signal</u> connection and <u>noise</u>
 <u>statistics</u> are both complex and poorly characterized
- Result: there is no "best" way to analyze FMRI time series data: there are only "reasonable" analysis methods
- To deal with data, must make some assumptions about the signal and noise
- Assumptions will be wrong, but must do something
- Different kinds of experiments require different kinds of analyses
 - ★ Since signal models and questions you ask about the signal will vary
 - ★ It is important to <u>understand</u> what is going on, so you can select and evaluate "reasonable" analyses

Meta-method for creating analysis methods

- Write down a mathematical model connecting stimulus (or "activation") to signal
- Write down a statistical model for the noise
- Combine them to produce an equation for measurements given signal+noise
 - ★ Equation will have unknown parameters, which are to be estimated from the data
 - ★ N.B.: signal may have zero strength (no "activation")
- Use statistical detection theory to produce an algorithm for processing the measurements to assess signal presence and characteristics
 - ★ e.g., least squares fit of model parameters to data

Time Series Analysis on Voxel Data

- Most common forms of FMRI analysis involve fitting an activation+BOLD model to each voxel's time series separately (AKA "univariate" analysis)
 - ★ Some pre-processing steps do include intervoxel computations; e.g.,
 - spatial smoothing to reduce noise
 - spatial registration to correct for subject motion
- Result of model fits is a set of parameters at each voxel, estimated from that voxel's data
 - ★ e.g., activation amplitude (B), delay, shape
 - ★ "SPM" = statistical parametric map; e.g., t or F
- Further analysis steps operate on individual SPMs
 - ★ e.g., combining/contrasting data among subjects

Some Features of FMRI Voxel Time Series

- FMRI only measures <u>changes</u> due to neural "activity"
 - ★ Baseline level of signal in a voxel means little or nothing about neural activity
 - ★ Also, baseline level tends to drift around slowly
 (100 s time scale or so; mostly from small subject motions)
- Therefore, an FMRI experiment must have at least 2 different neural conditions ("tasks" and/or "stimuli")
 - ★ Then statistically test for differences in the MRI signal level between conditions
 - ★ Many experiments: one condition is "rest"
- Baseline is modeled separately from activation signals, and <u>baseline model includes "rest" periods</u>

Some Sample FMRI Data Time Series

- First sample: Block-trial FMRI data
 - * "Activation" occurs over a sustained period of time (say, 10 s or longer), usually from more than one stimulation event, in rapid succession
 - ★ BOLD (hemodynamic) response accumulates from multiple close-in-time neural activations and is large
 - ★ BOLD response is often visible in time series
 - * Noise magnitude about same as BOLD response
- Next 2 slides: same brain voxel in 3 (of 9) EPI runs
 - ★ black curve (noisy) = data
 - ★ red curve (above data) = ideal model response
 - ★ blue curve (within data) = model fitted to data
 - ★ somatosensory task (finger being rubbed)

Block-trials: 27 s "on" / 27 s "off"; TR=2.5 s; 130 time points/run

Same Voxel: Run 3 and Average of all 9

⇒ Activation amplitude & shape vary among blocks! Why???

More Sample FMRI Data Time Series

- <u>Second sample</u>: Event-Related FMRI
 - ★ "Activation" occurs in single relatively brief intervals
 - ★ "Events" can be randomly or regularly spaced in time
 - If events are randomly spaced in time, signal model itself <u>looks</u> noise-like (to the pitiful human eye)
 - * BOLD response to stimulus tends to be weaker, since fewer nearby-in-time "activations" have overlapping signal changes (hemodynamic responses)
- Next slide: Visual stimulation experiment

"Active" voxel shown in next slide

Two Voxel Time Series from Same Run

Lesson: ER-FMRI activation is not obvious via casual inspection

Hemodynamic Response Function (HRF)

 HRF is the idealization of measurable FMRI signal change responding to a single activation cycle (up and down) from a stimulus in a voxel

Response to brief activation (< 1 s):

- delay of 1-2 s
- rise time of 4-5 s
- fall time of 4-6 s
- model equation:

$$h(t) \propto t^b e^{-t/c}$$

h(t) is signal change t seconds
 after activation

1 Brief Activation (Event)

Linearity of HRF

- Multiple activation cycles in a voxel, closer in time than duration of HRF:
 - * Assume that overlapping responses add

- Linearity is a pretty good assumption
- But not apparently perfect — about
 90% correct
- Nevertheless, is widely taken to be true and is the basis for the "general linear model" (GLM) in FMRI analysis

3 Brief Activations

Linearity and Extended Activation

- Extended activation, as in a block-trial experiment:
 - ★ HRF accumulates over its duration (≈ 10 s)

Convolution Signal Model

- FMRI signal model (in each voxel) is taken as sum of the individual trial HRFs (assumed equal)
 - ★ Stimulus timing is assumed known (or measured)
 - ★ Resulting time series (in blue) are called the *convolution* of the HRF with stimulus timing
 - ★ Finding HRF="deconvolution"
 - * AFNI code = 3dDeconvolve
 - ★ Convolution models only the FMRI signal changes

 Real data starts at and returns to a nonzero, slowly drifting baseline

Simple Regression Models

- Assume a fixed shape h(t) for the HRF
 - \star e.g., $h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]
 - ★ Convolve with stimulus timing to get ideal response function $r(t) = \sum_{k=1}^{K} h(t \tau_k) = \text{sum of HRF copies}$
- Assume a form for the baseline
 - \star e.g., $a + b \cdot t$ for a constant plus a linear trend
- In each voxel, fit data Z(t) to a curve of the form $Z(t) \approx a + b \cdot t + \beta \cdot r(t)$ The signal model!
 - a, b, ß are unknown parameters to be calculated in each voxel
 - a, b are "nuisance" parameters
 - β is amplitude of r(t) in data = "how much" BOLD

Simple Regression: Example

 Necessary baseline model complexity depends on duration of continuous imaging — e.g., 1 parameter per ~150 seconds

<u>Duration of Stimuli - Important Caveats</u>

- Slow baseline drift (time scale 100 s and longer) makes doing FMRI with long duration stimuli difficult
 - Learning experiment, where the task is done continuously for ~15 minutes and the subject is scanned to find parts of the brain that adapt during this time interval
 - Pharmaceutical challenge, where the subject is given some psychoactive drug whose action plays out over 10+ minutes (e.g., cocaine, ethanol)
- Multiple very <u>short duration</u> stimuli that are also very close in time to each other are very hard to tell apart, since their HRFs will have 90-95% overlap
 - Binocular rivalry, where percept switches ~ 0.5 s

<u>Multiple Stimuli = Multiple Regressors</u>

- Usually have more than one class of stimulus or activation in an experiment
 - ★ e.g., want to see size of "face activation" vis-à-vis "house activation"; or, "what" vs. "where" activity
- Need to model each separate class of stimulus with a separate response function $r_1(t)$, $r_2(t)$, $r_3(t)$,
 - \star Each $r_j(t)$ is based on the stimulus timing for activity in class number j
 - ★ Calculate a β_j amplitude = amount of $r_j(t)$ in voxel data time series Z(t)
 - ★ Contrast \(\beta\)s to see which voxels have differential activation levels under different stimulus conditions
 - o e.g., statistical test on the question $\beta_1 \beta_2 = 0$?

Multiple Stimuli - Important Caveat

- You do <u>not</u> model the baseline ("control") condition
 - e.g., "rest", visual fixation, high-low tone discrimination, or some other simple task
- FMRI can only measure <u>changes</u> in MR signal levels between tasks
 - So you need some simple-ish task to serve as a reference point
- The baseline model (e.g., $a + b \cdot t$) takes care of the signal level to which the MR signal returns when the "active" tasks are turned off
 - Modeling the reference task explicitly would be redundant (or "collinear", to anticipate a forthcoming concept)

Multiple Stimuli - Experiment Design

- How many distinct stimuli do you need in each class? Our rough recommendations:
 - Short event-related designs: at least 25 events in each stimulus class (spread across multiple imaging runs) — and more is better
 - Block designs: at least 5 blocks in each stimulus class — 10 would be better
- While we're on the subject: How many subjects?
 - Several independent studies agree that 20-25 subjects in each category are needed for highly reliable results
 - This number is more than has usually been the custom in FMRI-based studies!

Multiple Regressors: Cartoon Animation

- Red curve = signal model for class #1
- <u>Green</u> curve = signal model for #2
- Blue curve = $\beta_1 \cdot #1 + \beta_2 \cdot #2$ where β_1 and β_2 vary from 0.1 to 1.7 in the animation
- Goal of regression is to find β_1 and β_2 that make the blue curve best fit the data time series
- Gray curve = 1.5·#1+0.6·#2+noise = simulated data

Multiple Regressors: Collinearity!!

Multiple Regressors: Near Collinearity

Stimuli are too close in time to distinguish response #1 from #2, considering noise

- Red curve = signal model for class #1
- Green curve = signal model for #2
- Problem Surve = $\beta_1 \cdot \#1 + (1 \beta_1) \cdot \#2$

where β_1 varies randomly from 0.0 to 1.0 in animation

- •Gray curve =
 - $0.66 \cdot #1 + 0.33 \cdot #2$
- = simulated data with no noise
- Lots of different combinations of #1 and #2 are decent fits to gray curve

The Geometry of Collinearity - 1

- Trying to fit data as a sum of basis vectors that are nearly parallel doesn't work well: solutions can be huge
- Exactly parallel basis vectors would be impossible:
 - Determinant of matrix to invert would be zero

The Geometry of Collinearity - 2

Trying to fit data with too many regressors (basis vectors)
 doesn't work: no unique solution

Equations: Notation

- Will approximately follow notation of manual for the AFNI program 3dDeconvolve
- Time: continuous in reality, but in steps in the data
 - \star Functions of continuous time are written like f(t)
 - * Functions of discrete time expressed like $f(\underline{n} \cdot \underline{TR})$ where n=0,1,2,... and TR=time step
 - \star Usually use subscript notion f_n as shorthand
 - * Collection of numbers assembled in a column is a

$$\begin{cases} \mathbf{vector} \text{ of } \\ \mathbf{length} \ N \end{cases} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{bmatrix} = \mathbf{f} \quad \begin{bmatrix} A_{00} & A_{01} & \cdots & A_{0,N-1} \\ A_{10} & A_{11} & \cdots & A_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{M-1,0} & A_{M-1,1} & \cdots & A_{M-1,N-1} \end{bmatrix} = \mathbf{A} = \{ \mathbf{M} \times \mathbf{N} \text{ matrix} \}$$

Equations: Single Response Function

- In each voxel, fit data Z_n to a curve of the form
 - $Z_n \approx a + b \cdot t_n + \beta \cdot r_n$ for n=0,1,...,N-1 (N=# time pts)
 - a, b, β are unknown parameters to be calculated in each voxel $r_n = \sum_{k=1}^K h(t_n \tau_k) = \text{sum of HRF copies}$
 - a,b are "nuisance" baseline parameters
 - β is amplitude of r(t) in data = "how much" BOLD
 - Baseline model should be more complicated for long (> 150 s) continuous imaging runs:
 - $150 < T < 300 \text{ s: } a+b\cdot t+c\cdot t^2$
 - Longer: $a+b\cdot t+c\cdot t^2+\lceil T/150\rceil$ low frequency components
 - 3dDeconvolve uses Legendre polynomials for baseline
 - Often, also include as extra baseline components the estimated subject head movement time series, in order to remove residual contamination from such artifacts (will see example of this later)

Equations: Multiple Response Functions

• In each voxel, fit data Z_n to a curve of the form

$$Z_n \approx [\text{baseline}]_n + \beta_1 \cdot r_n^{(1)} + \beta_2 \cdot r_n^{(2)} + \beta_3 \cdot r_n^{(3)} + \cdots$$

- β_j is amplitude in data of $r_n^{(j)} = r_j(t_n)$; i.e., "how much" of j^{th} response function in the data time series
- In simple regression, each $r_j(t)$ is derived directly from stimulus timing **and** user-chosen HRF model
 - In terms of stimulus times:

$$r_n^{(j)} = \sum_{k=1}^{K_j} h_j(t_n - \tau_k^{(j)}) = \text{sum of HRF copies}$$

- Where $\tau_{k}^{(j)}$ is the k^{th} stimulus time in the j^{th} stimulus class
- These times are input using the -stim_times
 option to program 3dDeconvolve

Equations: Matrix-Vector Form

Express *known* data vector as a sum of *known* columns with *unknown* coefficents:

z depends on the voxel; R doesn't

Visualizing the R Matrix

- Can graph columns (program 1dplot)
 - But might have 20-50 columns
- Can plot columns on a grayscale (program
- 1dgrayplot Or 3dDeconvolve -xjpeg)
 - Easier way to show many columns
 - In this plot, darker bars means larger numbers

Solving $z \approx R\beta$ for β

- Number of equations = number of time points
 - ★ 100s per run, but perhaps 1000s per subject
- Number of unknowns usually in range 5–50
- Least squares solution: $\hat{\beta} = \left[\mathbf{R}^T \mathbf{R} \right]^{-1} \mathbf{R}^T \mathbf{z}$
 - \star $\hat{\beta}$ denotes an *estimate* of the true (unknown) β
 - * From $\hat{\beta}$, calculate $\hat{z} = R\hat{\beta}$ as the *fitted model*

- o $\mathbf{Z} \hat{\mathbf{Z}}$ is the **residual time series** = noise (we hope)
- o Statistics measure how much each regressor helps reduce residuals
- Collinearity: when matrix R^TR can't be inverted
 - ★ Near collinearity: when inverse exists but is huge

Simple Regression: Recapitulation

- Choose HRF model h(t) [AKA fixed-model regression]
- Build model responses r_n(t) to each stimulus class
 Using h(t) and the stimulus timing
- Choose baseline model time series
 - ★ Constant + linear + quadratic (+ movement?)
- Assemble model and baseline time series into the columns of the R matrix
- For each voxel time series \mathbf{z} , solve $\mathbf{z} \approx \mathbf{R} \boldsymbol{\beta}$ for $\hat{\boldsymbol{\beta}}$
- Individual subject maps: Test the coefficients in $\hat{\beta}$ that you care about for statistical significance
- **Group maps**: Transform the coefficients in $\hat{\beta}$ that you care about to Talairach space, and perform statistics on these $\hat{\beta}$ values

Sample Data Analysis: Simple Regression

- Enough theory (for now: more to come later!)
- To look at the data: type cd AFNI data1/afni; then afni
- Switch Underlay to dataset epi r1
 - ★ Then Sagittal Image and Graph
 - * FIM-Pick Ideal; then click afni/ideal r1.1D; then Set
 - * Right-click in image, Jump to (ijk), then 29 11 13, then Set

- Data clearly has activity in sync with reference
 - 20 s blocks
- Data also has a big spike, which is very annoying
 - Subject head movement!

Preparing Data for Analysis

- Six preparatory steps are common:
 - ★ Image registration (AKA realignment): program <u>3dvolreg</u>
 - ★ Image smoothing: program <u>3dmerge</u>
 - ★ Image masking: program 3dClipLevel or 3dAutomask
 - ★ Conversion to percentile: programs <u>3dTstat</u> and <u>3dcalc</u>
 - ★ Censoring out time points that are bad: program 3dToutcount or 3dTqual
 - ★ Catenating multiple imaging runs into 1 big dataset: program <u>3dTcat</u>
- Not all steps are necessary or desirable in any given case
- In this first example, will only do registration, since the data obviously needs this correction

Data Analysis Script

In file epi r1 decon: 3dvolreg (3D image registration) 3dvolreg -base 2 will be covered in detail in a later -verb presentation -prefix epi r1 reg 🔸 filename to get estimated motion parameters -1Dfile epi r1 mot.1D epi r1+orig <u>3dDeconvolve</u> = regression code 3dDeconvolve Name of input dataset (from 3dvolreg) -input epi r1 reg+orig Index of first sub-brick to process [skipping #0-1] -nfirst Number of input model time series -num stimts 1 -stim times 1 epi r1 times.1D $\setminus \leftarrow \rightarrow$ Name of input stimulus class timing file $(\tau's)$ 'BLOCK(20)' Name for results in AFNI menus -stim label 1 AllStim \ Indicates to output *t*-statistic for β weights -tout Name of output "bucket" dataset (statistics) -bucket epi r1 func -fitts epi rl fitts Name of output model fit dataset Name of image file to store X [AKA R] matrix -xjpeg epi r1 Xmat.jpg Name of text file in which to store X matrix -x1D epi r1 Xmat.x1D

Type tcsh epi_r1_decon; then wait for programs to run

Text Output of the epi r1 decon script

```
    3dvolreg Output

++ 3dvolreg: AFNI version=AFNI 2007 03 06 0841 (Mar 15 2007) [32-bit]
++ Reading input dataset ./epi r1+orig.BRIK
++ Edging: x=3 y=3 z=1
++ Initializing alignment base
++ Starting final pass on 110 sub-bricks: 0..1..2..3.. *** ..106..107..108..109..
++ CPU time for realignment=8.82 s [=0.0802 s/sub-brick]
++ Min: roll=-0.086 pitch=-0.995 yaw=-0.325 dS=-0.310 dL=-0.010 dP=-0.680
++ Mean: roll=-0.019 pitch=-0.020 yaw=-0.182 dS=+0.106 dL=+0.085 dP=-0.314
++ Max : roll=+0.107 pitch=+0.090 yaw=+0.000 dS=+0.172 dL=+0.204 dP=+0.079
++ Max displacement in automask = 2.05 (mm) at sub-brick 62 } Maximum movement estimate
++ Wrote dataset to disk in ./epi r1 reg+orig.BRIK

    3dDeconvolve Output

++ 3dDeconvolve: AFNI version=AFNI 2007 03 06 0841 (Mar 15 2007) [32-bit]
++ Authored by: B. Douglas Ward, et al.
++ reading dataset epi r1 reg+orig
++ -stim times using TR=2.5 seconds
++ '-stim times 1' using LOCAL times
++ Wrote matrix image to file epi_r1_Xmat.jpg
++ Wrote matrix values to file epi_r1_Xmat.x1D Output file indicators
++ Signal+Baseline matrix condition [X] (108x3): 2.44244 ++ VERY GOOD ++
++ Signal-only matrix condition [X] (108x1): 1 ++ VERY GOOD ++
++ Baseline-only matrix condition [X] (108x2): 1.03259 ++ VERY GOOD ++
                                                                                    Assurance
++ -polort-only matrix condition [X] (108x2): 1.03259 ++ VERY GOOD ++
++ Matrix inverse average error = 3.97804e-16 ++ VERY GOOD ++
++ Matrix setup time = 0.59 s
++ Calculations starting; elapsed time=0.817
++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.} Progress meter/pacifier
++ Calculations finished; elapsed time=1.774
++ Wrote bucket dataset into ./epi_r1_func+orig.BRIK
++ Wrote 3D+time dataset into ./epi_r1_fitts+orig.BRIK

Output file indicators
++ #Flops=4.18044e+08 Average Dot Product=4.56798
```

If a program crashes, we'll need to see this text output (at the very least)!

Stimulus Timing: Input and Visualization

```
epi_r1_times.1D = 22.5 65.0 105.0 147.5 190.0 232.5
= times of start of each BLOCK(20)
```


Look at the Activation Map

- Run afni to view what we've got
 - ★ Switch Underlay to epi r1 reg (output from 3dvolreg)
 - * Switch Overlay to epi r1 func (output from 3dDeconvolve)
 - ★ Sagittal Image and Graph viewers
 - * FIM→Ignore→2 to have graph viewer not plot 1st 2 time pts
 - ★ FIM→Pick Ideal; pick epi_r1_ideal.1D (output from waver)
- Define Overlay to set up functional coloring
 - Olay \rightarrow Allstim[0] Coef (sets coloring to be from model fit β)
 - Thr→Allstim[0] t-s (sets threshold to be model fit t-statistic)
 - See Overlay (otherwise won't see the function!)
 - Play with threshold slider to get a meaningful activation map (e.g., t=4 is a decent threshold — more on thresholds later)

More Looking at the Results

- Graph viewer: Opt→Tran 1D→Dataset #N to plot the model fit dataset output by 3dDeconvolve
 - Will open the control panel for the Dataset #N plugin
 - Click first Input on; then choose Dataset epi_r1_fitts+orig
 - Also choose Color dk-blue to get a pleasing plot
 - Then click on Set+Close (to close the plugin's control panel)
 - Should now see fitted time series in the graph viewer instead of data time series
 - Graph viewer: click Opt→Double Plot→Overlay on to make the fitted time series appear as an overlay curve
 - This tool lets you visualize the quality of the data fit
- Can also now overlay function on MP-RAGE anatomical by using Switch Underlay to anat+orig dataset
 - Probably won't want to graph the anat+orig dataset!

Stimulus Correlated Movement?

- Extensive "activation" (i.e., correlation of data time series with model time series) along top of brain is an indicator of stimulus correlated motion artifact
- Can remain even after image registration, due to errors in alignment process, magnetic field inhomogeneities, etc.
- Can be partially removed by using estimated movement history (from 3dvolreg) as extra baseline model time series
 - FMRI signal changes proportional to movement won't be called "activation"
 - 3dvolreg saved motion parameter estimates into file epi_r1_mot.1D
 - For fun: 1dplot epi_r1_mot.1D

Removing Residual Motion Artifacts

Script epi_r1_decon_mot:

```
3dDeconvolve
 -input epi r1 reg+orig
 -nfirst
 -num stimts 7
 -stim times 1 epi r1 times.1D 'BLOCK(20)'
 -stim label 1 AllStim
 -stim file 2 epi r1 mot.1D'[0]'
 -stim base 2
            3 epi r1 mot.1D'[1]'
 -stim file
 -stim base 3
-stim file 4 epi r1 mot.1D'[2]'
 -stim base 4
 -stim file
             5 epi r1 mot.1D'[3]'
 -stim base 5
-stim file
             6 epi r1 mot.1D'[4]'
 -stim base
 -stim file
             7 epi r1 mot.1D'[5]'
 -stim base
-tout
 -bucket epi r1 func mot
 -fitts epi r1 fitts mot
 -xjpeg epi r1 Xmat mot.jpg
-x1D epi r1 Xmat mot.x1D
```

Input specification: same as before

These new lines:

- add 6 regressors to the model and assign them to the baseline (-stim_base option)
- these regressors come from 3dvolreg output

Output files: take a look at the results

Some Results: Before and After

Before: movement parameters are not in baseline model

After: movement parameters are in baseline model

t-statistic threshold set to (uncorrected) p-value of 10^{-4} in both images Before: 105 degrees of freedom (t=4.044) After: 105-6 = 99 DOF (t=4.054)

Setting the Threshold: Principles

- Bad things (i.e., errors):
 - False positives activations reported that aren't really there ≡ Type I errors (i.e., activations from noiseonly data)
 - False negatives non-activations reported where there should be true activations found ≡ Type II errors
- Usual approach in statistical testing is to control the probability of a type I error (the "p-value")
- In FMRI, we are making many statistical tests: one per voxel (≈20,000+) the result of which is an "activation map":
 - Voxels are colorized if they survive the statistical thresholding process

Setting the Threshold: Bonferroni

- If we set the threshold so there is a 1% chance that any given voxel is declared "active" even if its data is pure noise (FMRI jargon: "uncorrected" p-value is 0.01):
 - And assume each voxel's noise is independent of its neighbors (not really true)
 - With 20,000 voxels to threshold, would expect to get 200 false positives this may be as many as the true activations! Situation: Not so good.
- Bonferroni solution: set threshold (e.g., on *t*-statistic) so high that uncorrected *p*-value is 0.05/20000=2.5e-6
 - Then have only a 5% chance that even a single false positive voxel will be reported
 - Objection: will likely lose weak areas of activation

Setting the Threshold: Spatial Clustering

- Cluster-based detection lets us lower the statistical threshold and still control the false positive rate
- Two thresholds:
 - First: a per-voxel threshold that is somewhat low (so by itself leads to a lot of false positives, scattered around)
 - Second: form clusters of spatially contiguous (neighboring) voxels that survive the first threshold, and keep only those clusters above a volume threshold e.g., we don't keep isolated "active" voxels
- Usually: choose volume threshold, then calculate voxel-wise statistic threshold to get the overall "corrected" p-value you want (typically, corrected p=0.05)
 - No easy formulas for this type of dual thresholding, so must use simulation: AFNI program AlphaSim

AlphaSim: Clustering Thresholds

Simulated for brain mask of 18,465 voxels

• Look for smallest cluster with corrected *p* < 0.05

Uncorrected	Cluster Size	Cluster Size
<i>p</i> -value	/ Corrected p	/ Corrected p
(per voxel)	(uncorrelated)	(correlated 5 mm)
0.0002	2 / 0.001	3 / 0.004
0.0004	2/0.008	4 / 0.012
0.0007	2 / 0.026	3 / 0.031
0.0010	3 / 0.001	4 / 0.007
0.0020	3 / 0.003	4 / 0.032
0.0030	3 / 0.008	5 / 0.013
0.0040	3 / 0.018	5 / 0.029
0.0050	3 / 0.030	6 / 0.012
0.0060	4 / 0.003	6 / 0.023
0.0070	4 / 0.004	6 / 0.036
0.0080	4 / 0.006	7 / 0.016
0.0090	4 / 0.010	7 / 0.027
0.0100	4 / 0.015	7 / 0.042

Corresponds to sample data

Can make activation maps for display with cluster editing using 3dmerge program or in AFNI GUI (new: Sep 2006)

End of Important Aside

Multiple Stimulus Classes

- The experiment analyzed here in fact is more complicated
 - ★ There are 4 related visual stimulus types
 - Actions & Tools = active conditions (videos of complex movements and simple tool-like movements)
 - HighC & LowC = control conditions (moving high and low contrast gratings)
 - 6 blocks of 20 s duration in each condition (with fixation between blocks)
 - ★ One goal is to find areas that are differentially activated between these different types of stimuli
 - o That is, differential activation levels between Actions and Tools, and between Actions and Tools combined vs. HighC and LowC combined
 - ★ We have 4 imaging runs, 108 useful time points in each (skipping first 2 in each run) that we will analyze together
 - o Already registered and put together into dataset rall vr+orig
 - o The first 2 time points in each run have been cut out in this dataset

Regression with Multiple Model Files

Script file rall_decon does the job:

```
3dDeconvolve -input rall vr+orig -concat '1D: 0 108 216 324'
                                                                 \ ← Run lengths
 -num stimts 4
 -stim times 1 '1D: 17.5 | 185.0 227.5 | 60.0 142.5 | 227.5'
                                                                 \ \tau's on command
                                                                      line instead of file:
               'BLOCK(20,1)'
 -stim times 2 '1D: 100.0 | 17.5 | 185.0 227.5 | 17.5 100.0'

→ I indicates a

                                                                      new "line" (1 line
               'BLOCK(20,1)'
                                                                     of stimulus start
 -stim times 3 '1D: 60.0 227.5 | 60.0 | 17.5 | 142.5 185.0'
                                                                      times per run)
               'BLOCK (20,1)'
 -stim times 4 '1D: 142.5 185.0 | 100.0 142.5 | 100.0 | 60.0'
               'BLOCK (20,1)'
 -stim label 1 Actions -stim label 2 Tools
 -stim label 3 HighC -stim label 4 LowC
                                                                 \ ← generate
 -gltsym 'SYM: Actions -Tools'
                                            -glt label 1 AvsT
                                                                      Actions-Tools
 -gltsym 'SYM: HighC -LowC'
                                            -qlt label 2 HvsL
                                                                      statistical map
 -gltsym 'SYM: Actions Tools -HighC -LowC' -glt label 3 ATvsHL \
                                                                    specify statistics
-fout -tout
                                                                      types to output
 -bucket func rall -fitts fitts rall
 -xjpeg xmat rall.jpg -x1D xmat rall.x1D
```

Run this script by typing tcsh rall_decon (takes a few minutes)

Regressor Matrix for This Script

via -xjpeg

via -x1D and 1dplot -sep_scl xmat_rall.x1D

-concat '1D: 0 108 216 324'

- "File" that indicates where distinct imaging runs start inside the input file
 - * Numbers are the time indexes inside the file for start of runs
 - ★ In this case, a .1D file put directly on the command line
 - Could also be a filename, if you want to store that data externally

-num stimts 4

We have 4 stimulus classes, so will need 4 -stim_times below

```
-stim_times 1
>'1D: 17.5 | 185.0 227.5 | 60.0 142.5 | 227.5'

'BLOCK(20,1)'
```

- "File" with 4 lines, each line specifying the start time in seconds for the stimuli within the corresponding imaging run, with the time measured relative to the start of the imaging run itself
- HRF for each block stimulus is now specified to go to maximum value of 1-(compare to graphs on previous slide)
 - ★ This feature is useful when converting FMRI response magnitude to be in units of percent of the mean baseline

Aside: the 'BLOCK()' HRF Model

• **BLOCK (L)** is convolution of square wave of duration **L** with "gamma variate function" $t^4e^{-t}/[4^4e^{-4}]$ (peak value=1 at t=4):

$$h(t) = \int_0^{\min(t,L)} s^4 e^{-s} / [4^4 e^{-4}] ds$$

- "Hidden" option: **BLOCK5** replaces "4" with "5" in the above
 - Slightly more delayed rise and fall times
- BLOCK (L, 1) makes peak amplitude of block response = 1

-gltsym 'SYM: Actions -Tools' -glt_label 1 AvsT

- GLTs are General Linear Tests
- 3dDeconvolve provides test statistics for each regressor and stimulus class separately, but if you want to test combinations or contrasts of the β weights in each voxel, you need the -gltsym option
- Example above tests the difference between the β weights for the Actions and the Tools responses
 - ★ Starting with SYM: means symbolic input is on command line
 - o Otherwise inputs will be read from a file
 - ★ Symbolic names for each stimulus class are taken from -stim_label options
 - \star Stimulus label can be preceded by + or to indicate sign to use in combination of β weights
- Goal is to test a linear combination of the β weights
 - Tests if $\beta_{Actions} \beta_{Tools} = 0$
 - e.g., does Actions get a bigger response than Tools?
- Quiz: what would 'SYM: Actions +Tools' test? | 0 = sloot + suoita + g it is at pluow it

```
-gltsym 'SYM: Actions Tools -HighC -LowC'
-glt_label 3 ATvsHL
```

- Goal is to test if $(\beta_{Actions} + \beta_{Tool}) (\beta_{HighC} + \beta_{LowC}) = 0$
 - Regions where this statistic is significant have different amounts of BOLD signal change in the more complex activity viewing tasks versus the grating viewing tasks
 - This is a way to factor out primary visual cortex, and see what areas are differentially more (or less?) responsive to complicated movements
- -glt_label 3 ATvsHL option is used to attach a meaningful label to the resulting statistics sub-bricks
 - \star Output includes the ordered summation of the β weights and the associated statistical parameters (t- and/or F-statistics)

-fout -tout

- = output both F- and t-statistics for each stimulus class (-fout) and stimulus coefficient (-tout) — but not for the baseline coefficients (if you want baseline statistics: -bout)
- The full model statistic is an F-statistic that shows how well the sum of all 4 input model time series fits voxel time series data
 - ★ Compared to how well *just* the baseline model time series fit the data times (in this example, have 8 baseline regressor columns in the matrix would have 14 if we added 6 movement parameters as well)
- The individual stimulus classes also will get individual F- and/or t-statistics indicating the significance of their individual incremental contributions to the data time series fit
 - * F_{Actions} tells if model {Actions+HighC+LowC+Tools+baseline} explains more of the data variability than model {HighC+LowC+Tools+baseline} with Actions omitted

Results of rall_decon Script

- Menu showing labels from 3dDeconvolve run
- Images showing results from third GLT contrast: **ATvsHL**
- Play with these results yourself

Statistics from 3dDeconvolve

- An F-statistic measures significance of how much a model component (stimulus class) reduced the variance (sum of squares) of data time series residual
 - ★ After all the other model components were given their chance to reduce the variance
 - * Residuals = data model fit = errors = -errts
 - ★ A *t*-statistic sub-brick measures impact of one coefficient (of course, **BLOCK** has only one coefficient)
- Full F measures how much the all signal regressors combined reduced the variance over just the baseline regressors (sub-brick #0)
- Individual partial-model Fs measures how much each individual signal regressor reduced data variance over the full model with that regressor excluded (sub-bricks #3, #6, #9, and #12)
- The Coef sub-bricks are the β weights (e.g., #1, #4, #7, #10) for the individual regressors
- Also present: GLT coefficients and statistics

```
0 Full_Fstat
 1 Actions#0_Coef
 2 Actions#0_Tstat
 3 Actions_Fstat
 4 Tools#0_Coef
 5 Tools#0_Tstat
 6 Tools_Fstat
 7 HighC#0_Coef
 8 HighC#0_Tstat
 9 HighC_Fstat
#10 LowC#0_Coef
#11 LowC#O_Tstat
#12 LowC_Fstat
#13 AvsT_GLT#0_Coef
#14 AvsT_GLT#0_Tstat
#15 AvsT_CLT_Fstat
#16 HvsL_CLT#0_Coef
#17 HvsL_GLT#0_Tstat
#18 HvsL_GLT_Fstat
#19 ATvsHL_GLT#0_Coef
20 ATvsHL_GLT#0_Tstat
 21 ATvsHL GLT Fstat
```

Group Analysis: will be carried out on β or **GLT** coefs from single-subject analyses

Deconvolution Signal Models

- Simple or Fixed-shape regression (previous):
 - ★ We fixed the shape of the HRF amplitude varies
 - ★ Used -stim_times to generate the signal model from the stimulus timing
 - * Found the amplitude of the signal model in each voxel solution to the set of linear equations = β weights
- Deconvolution or Variable-shape regression (now):
 - ★ We allow the shape of the HRF to vary in each voxel, for each stimulus class
 - ★ Appropriate when you don't want to overconstrain the solution by assuming an HRF shape
 - ★ Caveat: need to have enough time points during the HRF in order to resolve its shape

Deconvolution: Pros & Cons (+ & -)

- + Letting HRF shape varies allows for subject and regional variability in hemodynamics
- + Can test HRF estimate for different shapes (e.g., are later time points more "active" than earlier?)
- Need to estimate more parameters for each stimulus class than a fixed-shape model (e.g., 4-15 vs. 1 parameter=amplitude of HRF)
- Which means you need more data to get the same statistical power (assuming that the fixed-shape model you would otherwise use was in fact "correct")
- Freedom to get any shape in HRF results can give weird shapes that are difficult to interpret

Expressing HRF via Regression Unknowns

 The tool for expressing an unknown function as a finite set of numbers that can be fit via linear regression is an <u>expansion in basis functions</u>

$$h(t) = \beta_0 \psi_0(t) + \beta_1 \psi_1(t) + \beta_2 \psi_2(t) + \dots = \sum_{q=0}^{q=p} \beta_q \psi_q(t)$$

- * The basis functions $\psi_q(t)$ & expansion order p are known o Larger $p \Rightarrow$ more complex shapes & more parameters
- \star The unknowns to be found (in each voxel) comprises the set of weights β_q for each $\psi_q(t)$
- β weights appear only by multiplying known values, and HRF only appears in signal model by linear convolution (addition) with known stimulus timing
 - Resulting signal model still solvable by linear regression

3dDeconvolve with "Tent Functions"

- Need to describe HRF shape and magnitude with a finite number of parameters
 - \star And allow for calculation of h(t) at any arbitrary point in time after the stimulus times:

$$r_n = \sum_{k=1}^{K} h(t_n - \tau_k) = \text{sum of HRF copies}$$

- Simplest set of such functions are <u>tent functions</u>
 - ⋆ Also known as "piecewise linear splines"

$$T(x) = \begin{cases} 1 - |x| & \text{for } -1 < x < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

$$T\left(\frac{t - 3 \cdot TR}{2 \cdot TR}\right)$$

$$time$$

$$t = 0 \qquad t = TR \quad t = 2 \cdot TR \quad t = 3 \cdot TR \quad t = 4 \cdot TR \quad t = 5 \cdot TR$$

A

Tent Functions = Linear Interpolation

 Expansion of HRF in a set of spaced-apart tent functions is the same as linear interpolation between "knots"

$$h(t) = \beta_0 \cdot T\left(\frac{t}{L}\right) + \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2 \cdot L}{L}\right) + \beta_3 \cdot T\left(\frac{t-3 \cdot L}{L}\right) + \cdots$$

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing
 L and time grid spacing TR (usually would choose L ≥ TR)
- In 3dDeconvolve: specify duration of HRF and number of β parameters (details shown a few slides ahead)

Tent Functions: Average Signal Change

- For input to group analysis, usually want to compute average signal change
 - ★ Over entire duration of HRF (usual)
 - ★ Over a sub-interval of the HRF duration (sometimes)
- In previous slide, with 6 β weights, average signal change is $1/2 \beta_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + 1/2 \beta_5$
- First and last β weights are scaled by half since they only affect half as much of the duration of the response
- In practice, may want to use $0 \cdot \beta_0$ since immediate poststimulus response is not neuro-hemodynamically relevant
- All β weights (for each stimulus class) are output into the "bucket" dataset produced by 3dDeconvolve
- Can then be combined into a single number using 3dcalc

A

<u>Deconvolution and Collinearity</u>

Regular stimulus timing can lead to collinearity!

<u>Deconvolution Example - The Data</u>

- cd AFNI_data2
 - ★ data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
 - * SCript = s1.afni_proc_command (in AFNI_data2/ directory)
 - o stimuli timing and GLT contrast files in misc_files/
 - * this script runs program afni_proc.py to generate a shell script with all AFNI commands for single-subject analysis
 - Run by typing tcsh s1.afni_proc_command; then copy/paste
 tcsh -x proc.ED.8.glt | & tee output.proc.ED.8.glt

Text output from

programs goes to

screen and file

- Event-related study from Mike Beauchamp
 - ★ 10 runs with four classes of stimuli (short videos)
 - Tools moving (e.g., a hammer pounding) <u>ToolMovie</u>
 - People moving (e.g., jumping jacks) <u>HumanMovie</u>
 - o Points outlining tools moving (no objects, just points) ToolPoint
 - Points outlining people moving <u>HumanPoint</u>
 - ★ Goal: find brain area that distinguishes natural motions (HumanMovie and HumanPoint) from simpler rigid motions (ToolMovie and ToolPoint)

Master Script for Data Analysis

```
afni proc.py
                                                      \ Master script program

√ 10 input datasets

 -dsets ED/ED r??+orig.HEAD
 -subj id ED.8.glt

    Set output filenames -

                                                      \ Copy anat to output dir
 -copy anat ED/EDspgr
                                                      -tcat remove first trs 2
 -volreg align to first

√ Where to align all EPIs

                                                      -regress stim times misc files/stim times.*.1D

√ Stimulus labels

 -regress stim labels ToolMovie HumanMovie
                      ToolPoint HumanPoint
 -regress basis 'TENT(0,14,8)'
                                                      \

→ HRF model
 -regress opts 3dD
                                                      \ Specifies that next
                                                         lines are options to be
 -gltsym ../misc files/glt1.txt -glt label 1 FullF
                                                         passed to
 -qltsym ../misc files/qlt2.txt -qlt label 2 HvsT
                                                         3dDeconvolve
 -gltsym ../misc files/glt3.txt -glt label 3 MvsP
                                                         directly (in this case.
 -gltsym ../misc files/glt4.txt -glt label 4 HMvsHP
                                                         the GLTs we want
                                                         computed)
 -qltsym ../misc files/qlt5.txt -qlt label 5 TMvsTP \
 -gltsym ../misc files/glt6.txt -glt label 6 HPvsTP \
 -gltsym ../misc files/glt7.txt -glt label 7 HMvsTM
```

This script generates file proc. ED.8.glt (180 lines), which contains all the AFNI commands to produce analysis results into directory ED.8.glt.results/ (148 files)

Shell Script for Deconvolution - Outline

- Copy datasets into output directory for processing
- Examine each imaging run for outliers: 3dToutcount
- Time shift each run's slices to a common origin: 3dTshift
- Registration of each imaging run: 3dvolreg
- Smooth each volume in space (136 sub-bricks per run): 3dmerge
- Create a brain mask: 3dAutomask and 3dcalc
- Rescale each voxel time series in each imaging run so that its average through time is 100: 3dTstat and 3dcalc
 - * If baseline is 100, then a β_q of 5 (say) indicates a 5% signal change in that voxel at tent function knot #q after stimulus
 - ★ Biophysics: believe % signal change is relevant physiological parameter
- Catenate all imaging runs together into one big dataset (1360 time points): 3dTcat
 - ★ This dataset is useful for plotting -fitts output from 3dDeconvolve and visually examining time series fitting
- Compute HRFs and statistics: 3dDeconvolve

Script - 3dToutcount

```
# set list of runs
set runs = (`count -digits 2 1 10`)
# run 3dToutcount for each run
foreach run ( $runs )
  3dToutcount -automask pb00.$subj.r$run.tcat+orig > outcount r$run.1D
end
        10.
                  30.
                                          80.
                                                         110.
```

Via 1dplot outcount_r??.1D 3dToutcount searches for "outliers" in data time series;

You may want to examine noticeable runs & time points

Script - 3dTshift

- Produces new datasets where each time series has been shifted to have the same time origin
- -tzero 0 means that all data time series are interpolated to match the time offset of the first slice
 - Which is what the slice timing files usually refer to
 - Quintic (5th order) polynomial interpolation is used
- 3dDeconvolve will be run on time-shifted datasets
 - This is mostly important for Event-Related FMRI studies, where the response to the stimulus is briefer than for Block designs
 - (Because the stimulus is briefer)
 - Being a little off in the stimulus timing in a Block design is not likely to matter much

Script - 3dvolreg

```
# align each dset to the base volume
foreach run ( $runs )
   3dvolreg -verbose -zpad 1 -base pb01.$subj.r01.tshift+orig'[0]' \
        -1Dfile dfile.r$run.1D -prefix pb02.$subj.r$run.volreg \
        pb01.$subj.r$run.tshift+orig
```

end

- Produces new datasets where each volume (one time point) has been aligned (registered) to the #0 time point in the #1 dataset
- Movement parameters are saved into files dfile.r\$run.1D
 - Will be used as extra regressors in 3dDeconvolve to reduce motion artifacts

1dplot -volreg dfile.rall.1D

- Shows movement parameters for all runs (1360 time points) in degrees and millimeters
- Important to look at this graph!
- Excessive movement can make an imaging run useless — 3dvolreg won't be able to compensate
 - Pay attention to scale of movements: more than about 2 voxel sizes in a short time interval is usually bad

Script - 3dmerge

```
# blur each volume
foreach run ( $runs )
    3dmerge -1blur fwhm 4 -doall -prefix pb03.$subj.r$run.blur
            pb02.$subj.r$run.volreg+orig
end
```

• Why Blur? Reduce noise by averaging neighboring voxels time series

- **Yellow** curve = Model fit ($R^2 = 0.50$)
- <u>Green</u> curve = Stimulus timing

This is an extremely good fit for ER FMRI data!

Why Blur? - 2

- fMRI activations are (usually)
 blob-ish (several voxels across)
- Averaging neighbors will also reduce the fiendish multiple comparisons problem

- ★ Number of independent "resels" will be smaller than number of voxels (e.g., 2000 vs. 20000)
- Why not just acquire at lower resolution?
 - ★ To avoid averaging across brain/non-brain interfaces
 - ⋆ To project onto surface models
- Amount to blur is specified as FWHM (Full Width at Half Maximum) of spatial averaging filter (4 mm in script)

Script - 3dAutomask

```
# create 'full_mask' dataset (union mask)
foreach run ( $runs )
   3dAutomask -dilate 1 -prefix rm.mask_r$run pb03.$subj.r$run.blur+orig
end
# get mean and compare it to 0 for taking 'union'
3dMean -datum short -prefix rm.mean rm.mask*.HEAD
3dcalc -a rm.mean+orig -expr 'ispositive(a-0)' -prefix full mask.$subj
```

- 3dAutomask creates a mask of contiguous high-intensity voxels (with some hole-filling) from each imaging run separately
- 3dMean and 3dcalc are used to create a mask that is the <u>union</u> of all the individual run masks
- 3dDeconvolve analysis will be limited to voxels in this mask
 - Will run faster, since less data to process

Script - Scaling

```
# scale each voxel time series to have a mean of 100
# (subject to maximum value of 200)
foreach run ( $runs )
   3dTstat -prefix rm.mean_r$run pb03.$subj.r$run.blur+orig
   3dcalc -a pb03.$subj.r$run.blur+orig -b rm.mean_r$run+orig \
        -c full_mask.$subj+orig \
        -expr 'c * min(200, a/b*100)' -prefix pb04.$subj.r$run.scale
```

end

- 3dTstat calculates the mean (through time) of each voxel's time series data
- For voxels in the mask, each data point is scaled (multiplied) using 3dcalc so that it's time series will have mean=100
- If an HRF regressor has max amplitude = 1, then its β coefficient will represent the percent signal change (from the mean) due to that part of the signal model
- Scaled images are very boring
 - No spatial contrast by design!
 - Graphs have common baseline now

Script - 3dDeconvolve

```
3dDeconvolve -input pb04.$subj.r??.scale+orig.HEAD -polort 2
 -mask full mask.$subj+orig -basis normall 1 -num stimts 10
 -stim times 1 stimuli/stim times.01.1D 'TENT(0,14,8)'
 -stim label 1 ToolMovie
 -stim times 2 stimuli/stim times.02.1D 'TENT(0,14,8)'
 -stim label 2 HumanMovie
                                                                        4 stim types
 -stim times 3 stimuli/stim times.03.1D 'TENT(0,14,8)'
 -stim label 3 ToolPoint
 -stim times 4 stimuli/stim times.04.1D 'TENT(0,14,8)'
 -stim label 4 HumanPoint
 -stim file 5 dfile.rall.1D'[0]' -stim base 5 -stim label 5 roll
 -stim file 6 dfile.rall.1D'[1]' -stim base 6 -stim label 6 pitch
 -stim file 7 dfile.rall.1D'[2]' -stim base 7 -stim label 7 yaw
                                                                        motion params
 -stim file 8 dfile.rall.1D'[3]' -stim base 8 -stim label 8 dS
 -stim file 9 dfile.rall.1D'[4]' -stim base 9 -stim label 9 dL
 -stim file 10 dfile.rall.1D'[5]' -stim base 10 -stim label 10 dP
 -iresp 1 iresp ToolMovie.$subj -iresp 2 iresp HumanMovie.$subj
                                                                        HRF outputs
 -iresp 3 iresp ToolPoint.$subj -iresp 4 iresp HumanPoint.$subj
 -gltsym ../misc files/glt1.txt -glt label 1 FullF
 -gltsym ../misc files/glt2.txt -glt label 2 HvsT
 -gltsym ../misc files/glt3.txt -glt label 3 MvsP
                                                                        GLTs
 -gltsym ../misc files/glt4.txt -glt label 4 HMvsHP
 -gltsym ../misc files/glt5.txt -glt label 5 TMvsTP
 -gltsym ../misc files/glt6.txt -glt label 6 HPvsTP
 -gltsym ../misc files/glt7.txt -glt label 7 HMvsTM
 -fout -tout -full first -x1D Xmat.x1D -fitts fitts.$subj -bucket stats.$subj
```

Results: Humans vs. Tools

- Color overlay:HvsTGLT contrast
- Blue (upper) graphs: Human HRFs
- Red (lower) graphs: Tool HRFs

Script - X Matrix

Via 1grayplot -sep Xmat.x1D

Script - Random Comments

- •-polort 2
 - ★Sets baseline (detrending) to use quadratic polynomials—in each run
- •-mask full_mask.\$subj+orig
 - ★Process only the voxels that are nonzero in this mask dataset
- -basis normall 1
 - ★Make sure that the basis functions used in the HRF expansion all have maximum magnitude=1
- -stim_times 1 stimuli/stim_times.01.1D
 'TENT(0,14,8)'
 - -stim label 1 ToolMovie
 - ★The HRF model for the ToolMovie stimuli starts at 0 s after each stimulus, lasts for 14 s, and has 8 basis tent functions
 - o Which have knots spaced 14/(8-1)=2 s apart)
- •-iresp 1 iresp ToolMovie.\$subj
 - *The HRF model for the ToolMovie stimuli is output into dataset iresp ToolMovie.ED.8.glt+orig

Script - GLTs

- -gltsym ../misc_files/glt2.txt -glt_label 2 HvsT
 * File ../misc files/glt2.txt contains 1 line of text:
 - o -ToolMovie +HumanMovie -ToolPoint +HumanPoint
 - This is the "Humans vs. Tools" HvsT contrast shown on Results slide
- This GLT means to take all 8 β coefficients for each stimulus class and combine them with additions and subtractions as ordered:

$$LC = -\beta_0^{TM} - \dots - \beta_7^{TM} + \beta_0^{HM} + \dots + \beta_7^{HM} - \beta_0^{TP} - \dots - \beta_7^{TP} + \beta_0^{HP} + \dots + \beta_7^{HP}$$

- This test is looking at the integrated (summed) response to the "Human" stimuli and subtracting it from the integrated response to the "Tool" stimuli
- Combining subsets of the
 ^B weights is also possible with -gltsym:
 - +HumanMovie[2..6] -HumanPoint[2..6]
 - This GLT would add up just the #2,3,4,5, & 6 β weights for one type of stimulus and subtract the sum of the #2,3,4,5, & 6 β weights for another type of stimulus
 - And also produce F- and t-statistics for this linear combination

Script - Multi-Row GLTs

GLTs presented up to now have had one row

-glt label 1 FullF

- ★ Testing if some linear combination of β weights is nonzero; test statistic is t or $F(F=t^2)$ when testing a single number)
- ★ Testing if the X matrix columns, when added together to form one column as specified by the GLT (+ and -), explain a significant fraction of the data time series (equivalent to above)
- Can also do a single test to see if several different combinations of β weights are all zero
 -gltsym ../misc_files/glt1.txt

```
★ Tests if any of the stimulus classes have nonzero integrated HRF (each name means "add up those $\beta$ weights") : DOF= (4,1292)
```

+HumanPoint

* Different than the default "Full F-stat" produced by 3dDeconvolve, which tests if any of the *individual* β weights are nonzero: DOF= (32,1292)

Two Possible Formats for -stim times

- A single column of numbers (GLOBAL times)
 - ⋆ One stimulus time per row
 - \star Times are relative to first image in dataset being at t=0
 - ★ May not be simplest to use if multiple runs are catenated
- One row for each run within a catenated dataset (LOCAL times)
 - ★ Each time in j^{th} row is relative to start of run #j being t=0
 - ★ If some run has NO stimuli in the given class, just put a single "*" in that row as a filler
 4.7 9.6 11.8 19.4
 - Different numbers of stimuli per run are OK
 - At least one row must have more than 1 time (so that the LOCAL type of timing file can be told from the GLOBAL)

8.3 10.6

- Two methods are available because of users' diverse needs
 - ★ N.B.: if you chop first few images off the start of each run, the inputs to -stim_times must be adjusted accordingly

Other Features of 3dDeconvolve

- -input1D = used to process a single time series, rather than a dataset full of time series
 - ★ e.g., test out a stimulus timing sequence on sample data
 - ★ -nodata option can be used to check for collinearity
- -censor = used to turn off processing for some time points
 - ★ for time points that are "bad" (e.g., too much movement; scanner hiccup)
 - ★ -CENSORTR 2:37 = newer way to specify omissions (e.g., run #2, index #37)
- -sresp = output standard deviation of HRF estimates
 - ★ can then plot error bands around HRF in AFNI graph viewer
- -errts = output residuals (difference between fitted model and data)
 - ★ for statistical analysis of time series noise
- -TR_times dt = calculate -iresp and -sresp HRF results
 with time step dt (instead of input dataset TR)
 - ★ Can be used to make HRF graphs look better
- -jobs N = run with independent threads N of them
 - ★ extra speed, if you have a dual-CPU system (or more)!

http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSummer2004.html http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSpring2007.html

- Equation solver: Program computes condition number for X
 matrix (measures of how sensitive regression results are to changes in X)
 - ★ If the condition number is "bad" (too big), then the program will not actually proceed to compute the results
 - ★ You can use the -GOFORIT option on the command line to force the program to run despite X matrix warnings
 - But you should strive to understand why you are getting these warnings!!
- Other matrix checks:
 - ★ Duplicate stimulus filenames, duplicate regression matrix columns, all zero matrix columns
- Check the screen output for **WARNING**s and **ERRORS**
 - ★ Such messages also saved into file 3dDeconvolve.err

- All-zero regressors are allowed (with -GOFORIT)
 - ★ Will get zero weight in the solution
 - ★ Example: task where subject makes a choice for each stimulus (e.g., male or female face?)
 - You want to analyze correct and incorrect trials as separate cases
 - What if some subject makes no mistakes? Hmmm...
 - Can keep the all-zero regressor (e.g., all -stim_times = *)
 - → Input files and output datasets for error-making and perfectperforming subjects will be organized the same way
- 3dDeconvolve_f program can be used to compute linear regression results in single precision (7 decimal places) rather than double precision (16 places)
 - ★ For better speed, but with lower numerical accuracy
 - ★ Best to do at least one run both ways to check if results differ significantly (Equation solver should be safe, but ...)

- Default output format is 16-bit short integers, with a scaling factor for each sub-brick to convert it to floating point values
 - ★ -float option can be used to get 32-bit floating point format output — more precision, and more disk space
- 3dDeconvolve recommends a -polort value, and prints that out as well as the value you chose (or defaulted to)
 - ★ -polort A can be used to let the program set the detrending (AKA "high pass filtering") level automatically
- -stim_file is used to input a column directly into X matrix
 - ★ Motion parameters (as in previous examples)
 - ★ If you create a stimulus+response model outside 3dDeconvolve (e.g., using program waver)

- -stim_times has some other basis function options for the HRF model besides BLOCK and TENT
 - * CSPLIN = cubic spline instead of TENT = linear spline
 - o Same parameters: (start, stop, number of regressors)
 - Can be used as a "drop in" replacement for TENT

- -fitts option is used to create a synthetic dataset
 - ★ each voxel time series is full (signal+baseline) model as fitted to the data time series in the corresponding voxel location
- 3dSynthesize program can be used to create synthetic datasets from subsets of the full model
 - ★ Uses -x1D and -cbucket outputs from 3dDeconvolve
 - -cbucket stores
 \begin{align*} coefficients for each X matrix column into dataset
 - -x1D stores the matrix columns (and -stim labels)
 - ⋆ Potential uses:
 - Baseline only dataset
 - ⇒ 3dSynthesize -cbucket fred+orig -matrix fred.x1D -select baseline -prefix fred base
 - → Could subtract this dataset from original data to get signal+noise dataset that has no baseline component left
 - Just one stimulus class model (+ baseline) dataset
 - → 3dSynthesize -cbucket fred+orig -matrix fred.x1D -select baseline <u>Faces</u> -prefix fred_Faces

<u>Upgrades</u> – <u>Planned</u> or <u>Dreamed of</u>

- "Area under curve" addition to -gltsym to allow testing of pieces of HRF models from -stim_times
- Slice- and/or voxel-dependent regressors
 - ⋆ For physiological noise cancellation, etc.
 - ★ To save memory? (Process each slice separately)
 - One slice-at-a-time regression can be done in a Unix script, using 3dZcutup and 3dZcat programs
- Estimate temporal correlation structure of residual time series, then use that information to re-do the regression analysis (to improve/correct the statistics)
 - ★ Could do the same with spatial correlation?

- AM = Amplitude Modulated (or Modulation)
 - ★ Have some extra data measured about each response to a stimulus, and maybe the BOLD response amplitude is modulated by this
 - ★ Reaction time; Galvanic skin response; Pain level perception; Emotional valence (happy or sad or angry face?)
- Want to see if some brain activations vary proportionally to this ABI (Auxiliary Behaviorial Information)
- Discrete levels (2 or maybe 3) of ABI:
 - ★ Separate the stimuli into sub-classes that are determined by the ABI ("on" and "off", maybe?)
 - ★ Use a GLT to test if there is a difference between the FMRI responses in the sub-classes

```
3dDeconvolve ...
-stim_times 1 regressor_on.1D 'BLOCK(2,1)' -stim_label 1 'On' \
-stim_times 2 regressor_off.1D 'BLOCK(2,1)' -stim_label 2 'Off' \
-gltsym 'SYM: +On | +Off' -glt_label 1 'On+Off' \
-gltsym 'SYM: +On -Off' -glt_label 2 'On-Off' ...
```

- "On+Off" tests for any activation in either the "on" or "off" conditions
- "On-Off" tests for differences in activation between "on" and "off" conditions
- Can use 3dcalc to threshold on both statistics at once to find a conjunction

- Continuous ABI levels
 - ★ Want to find active voxels whose activation level also depends on ABI
 - * 3dDeconvolve is a linear program, so must make the assumption that the change in FMRI signal as ABI changes is linearly proportional to the changes in the ABI values
- Need to make 2 separate regressors
 - ★ One to find the mean FMRI response (the usual -stim_times analysis)
 - ★ One to find the variations in the FMRI response as the ABI data varies
- The second regressor should have the form

$$r_{\text{AM2}}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot (a_k - \overline{a})$$

- ***** Where a_k =value of k^{th} ABI value, and \bar{a} is the average ABI value
- Response (B) for first regressor is standard activation map
- Statistics and β for second regressor make activation map of places whose BOLD response changes with changes in ABI
 - ★ Using 2 regressors allows separation of voxels that are active but are not detectably modulated by the ABI from those that are ABI-sensitive

- New feature of 3dDeconvolve: -stim_times_AM2
- Use is very similar to standard -stim_times
 - ★ -stim times AM2 1 times ABI.1D 'BLOCK(2,1)'
 - ★ The times_ABI.1D file has time entries that are "married" to ABI values: 10*5 23*4 27*2 39*5

```
10*5 23*4 27*2 39*5
17*2 32*5
*
16*2 24*3 37*5 41*4
```

- ★ Such files can be created from 2 standard .1D files using the new 1dMarry program
 - o The -divorce option can be used to split them up
- 3dDeconvolve automatically creates the two regressors (unmodulated and amplitude modulated)
 - * Use -fout option to get statistics for activation of the pair of regressors (i.e., testing null hypothesis that both β weights are zero: that there is no ABI-independent or ABI-proportional signal change)
 - \star Use -tout option to test each β weight separately
 - ★ Can 1dplot X matrix columns to see each regressor

- The AM feature is new, and so needs some practical user experiences before it can be considered "standard practice"
 - ★ In particular: don't know how much data or how many events are needed to get good ABI-dependent statistics
- If you want, -stim times AM1 is also available
 - * It only builds the regressor proportional to ABI data directly, with no mean removed: $r_{\rm AMI}(t) = \sum_{k=1}^K h(t-\tau_k) \cdot a_k$
 - ★ Can't imagine what value this option has, but you never know ... (if you can think of a good use, let me know)
- Future directions:
 - ★ Allow more than one amplitude to be married to each stimulus time (insert obligatory polygamy/polyandry joke here)
 - How many ABI types at once is too many? I don't know.
 - ★ How to deal with unknown nonlinearities in the BOLD response to ABI values? I don't know.
 - ★ Deconvolution with amplitude modulation? Requires more thought.

<u>AM Regression - 5</u>

Timing: AM.1D = 10*1 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1

• 3dDeconvolve -nodata 300 1.0 -num_stimts 1 \
 -stim times AM1 1 AM.1D 'BLOCK(10,1)' -x1D AM1.x1D

• 1dplot AM1.x1D'[2]'

AM1 model of signal (modulation = ABI)

- 1dplot -sepscl \AM2.x1D'[2,3]'

AM2 model of signal

Other Advanced Topics in Regression

- Can have activations with multiple phases that are not always in the same time relationship to each other; e.g.:
 - a) subject gets cue #1
 - b) variable waiting time ("hold")
 - c) subject gets cue #2, emits response
 - → which depends on both cue #1 and #2

timing of events is known

- ★ Cannot treat this as one event with one HRF, since the different waiting times will result in different overlaps in separate responses from cue #1 and cue #2
- ★ Solution is multiple HRFs: separate HRF (fixed shape or deconvolution) for cue #1 times and for cue #2 times
 - Must have significant variability in inter-cue waiting times, or will get a nearly-collinear model
 - ⇒ impossible to tell tail end of HRF #1 from the start of HRF #2, if always locked together in same temporal relationship
 - How much variability is "significant"? Good question.

Even More Complicated Case

- Solving a visually presented puzzle:
 - a) subject sees puzzle
 - b) subject cogitates a while
 - c) subject responds with solution

- The problem is that we expect some voxels to be significant in phase (b) as well as phases (a) and/or (c)
- Variable length of phase (b) means that shape for its response varies between trials
 - * Which is contrary to the whole idea of averaging trials together to get decent statistics (which is basically what linear regression for the β weights does, in an elaborate sort of way)
- Could assume response amplitude in phase (b) is constant across trials, and response duration varies directly with time between phases (a) and (c)
 - ⋆ Need three HRFs
 - ★ Can't generate (b) HRF in 3dDeconvolve

Noise Issues

- "Noise" in FMRI is caused by several factors, not completely characterized
 - ★ MR thermal noise (well understood, unremovable)
 - ★ Cardiac and respiratory cycles (partly understood)
 - In principle, could measure these sources of noise separately and then try to regress them out
 - → RETROICOR program underway (Rasmus Birn of FIM/NIMH)
 - ★ Scanner fluctuations (e.g., thermal drift of hardware)
 - ★ Small subject head movements (10-100 mm)
 - ★ Very low frequency fluctuations (periods longer than 100 s)
- Data analysis should try to remove what can be removed and allow for the statistical effects of what can't be removed
 - ★ "Serial correlation" in the noise time series affects the t- and F-statistics calculated by 3dDeconvolve
 - ★ At present, nothing is done to correct for this effect (by us)

Nonlinear Regression

- Linear models aren't the only possibility
 - \star e.g., could try to fit HRF of the form $h(t) = a \cdot t^b \cdot e^{-t/c}$
 - ★ Unknowns b and c appear nonlinearly in this formula
- Program 3dNLfim can do nonlinear regression (including nonlinear deconvolution)
 - ★ User must provide a C function that computes the model time series, given a set of parameters (e.g., a, b, c)
 - We could help you develop this C model function
 - Several sample model functions in the AFNI source code distribution
 - ★ Program then drives this C function repeatedly, searching for the set of parameters that best fit each voxel
 - ★ Has been used to fit pharmacological wash-in/wash-out models (difference of two exponentials) to FMRI data acquired during pharmacological challenges
 - o e.g., injection of nicotine, cocaine, ethanol, etc.
 - these are difficult experiments to do and to analyze

Spatial Models of Activation

- Smooth data in space before analysis
- Average data across anatomicallyselected regions of interest ROI (before or after analysis)
 - Labor intensive (i.e., hire more students)
- Reject isolated small clusters of abovethreshold voxels after analysis

Spatial Smoothing of Data

- Reduces number of comparisons
- Reduces noise (by averaging)
- Reduces spatial resolution
 - Blur it enough: Can make FMRI results look like low resolution PET data
- Smart smoothing: average only over nearby brain or gray matter voxels
 - Uses resolution of FMRI cleverly
 - New AFNI program: 3dBlurToFWHM
 - Or: average over selected ROIs
 - Or: cortical surface based smoothing

Spatial Clustering

- Analyze data, create statistical map (e.g., t statistic in each voxel)
- Threshold map at a low t value, in each voxel separately
 - Will have many false positives
- Threshold map by rejecting clusters of voxels below a given size
- Can control false-positive rate by adjusting threshold and cluster-size thresholds together

Cluster-Based Detection

What the World Needs Now

- Unified HRF/Deconvolution

 Blob analysis
 - Time
 —Space patterns computed all at once, instead of arbitrary spatial smoothing
 - Increase statistical power by bringing data from multiple voxels together cleverly
 - Instead of time analysis followed by spatial analysis (described earlier)
 - Instead of component-style analyses (e.g., ICA) that do not use stimulus timing
- Difficulty: models for spatial blobs
 - Little information à priori ⇒ must be adaptive